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Summary
This paper presents a method to generate maps of high resolution
permeability from multiple well single-phase flow rate and pressure
data. The dynamic (i.e., temporal) production data contain impor-
tant information about the interwell permeability distribution that
should be integrated with static data, such as well and seismic data,
to generate reservoir models to provide reliable input to reservoir
simulation and reservoir management. A two-step procedure is
proposed for such data integration: establish the spatial constraints
on large-scale permeability trends caused by the production data by
means of an inverse technique and construct the detailed geostatis-
tical reservoir models subject to those spatial constraints by means
of geostatistical techniques. The single-phase pressure and produc-
tion data could be provided by permanent pressure gauges, simul-
taneous multiple well tests, or flow rates under primary depletion.

Production data and reservoir petrophysical properties, specifi-
cally permeability, are nonlinearly related through flow equations.
Establishing the spatial constraints on permeability resulting from
production data calls for the solution of a difficult inverse problem.
This paper adapts the sequential self-calibration (SSC) inverse
technique to single-phase multiple-well transient pressure and pro-
duction rate data. The SSC method is an iterative geostatistically
based inverse method coupled with an optimization procedure that
generates a series of coarse grid two-dimensional (2D) permeability
realizations whose numerical flow simulations correctly reproduce
the production data. Inverse results with two synthetic data sets
show that this SSC implementation is flexible, computationally
efficient, and robust.

Fine-scale models generated by downscaling the SSC generated
coarse-scale models (by simulated annealing) are shown to preserve
the match to the production data at the coarse scale. Finally,
reservoir performance prediction results show how the integration
of production data can dramatically improve the accuracy of
production forecasting with significantly less uncertainty.

Introduction
Optimal reservoir management requires reliable performance fore-
casts with as little uncertainty as possible. Incomplete data and
inability to model the physics of fluid flow at a suitably small scale
lead to uncertainty. Uncertainties in the detailed description of
reservoir lithofacies, porosity, and permeability are large contrib-
utors to uncertainty in reservoir performance forecasting. Reducing
this uncertainty can be achieved only by integrating additional data
in reservoir modeling.

A large variety of geostatistical techniques have been developed
that construct reservoir models conditioned to diverse types of static
data, including hard well data and soft seismic data.1 Commonly,
a number of techniques are applied sequentially to model the large
reservoir geometry; the lithofacies; and then the petrophysical
properties, such as porosity and permeability. However, conven-
tional geostatistical techniques, including Gaussian, indicator, an-
nealing-based, or object-based methods, are not suited to integrate
dynamic production data directly.

Production data and reservoir petrophysical properties are related
to each other through flow equations, which are highly nonlinear.
As a consequence, accounting for dynamic engineering data in
geostatistical reservoir modeling is a difficult inverse problem.2-5

Nevertheless, historical production data are often the most impor-
tant information because they provide a direct measure of the actual
reservoir response to the recovery process that forms the basis for
reservoir management decisions. Integrating dynamic production data
is an important outstanding problem in reservoir characterization.

Ideally, we want to match all types of production data in the
reservoir model at the required resolution directly and simulta-
neously with other types of geological and geophysical data. A
number of inverse techniques have been developed for this pur-
pose.2,4,6-10 Direct integration at the fine scale is not feasible
because the mathematical inversion of the flow equations is com-
putationally intensive, pressure and production data measured at the
wells are responding to the spatial variation of larger-scale effective
properties, and it is difficult to match production data simulta-
neously with other static geological and geophysical data. Because
of these limitations, currently available inverse techniques are
limited to constructing relatively coarse-scale models.

The coarse grid models that could be constructed by direct
inversion techniques are usually inadequate for reliable production
forecasting. In many practical situations, while keeping models as
simple as possible, we would like to create highly resolved models
of lithofacies, porosity, and permeability. Our proposal, therefore,
is a two-stage approach where we establish the spatial constraints
on large-scale permeability trends caused by the production data
use of an inverse technique and construct the detailed geostatis-
tical models subject to those spatial constraints and the static
data as well.

A review of available inverse techniques has been presented in
our previous paper.11 In this paper, the SSC inverse technique3,12

is adapted to invert permeability distribution from multiple well,
single-phase production data. Under the two-stage approach frame-
work, the SSC method is considered to be an interpretative tool of
coding production data into spatial constraints of permeability (i.e.,
the multiple realizations of coarse grid permeability models) for the
first stage (seeFig. 1). Then, an annealing-based geostatistical
technique is used to construct high resolution reservoir models
constrained to the SSC generated coarse grid models for the second
stage. The application of the SSC method to synthetic data sets
documents the utility and robustness of the method in generating
coarse-scale permeability models. The ability to use the coarse grid
models to generate fine-scale permeability models that preserve the
match of the production data is illustrated. Finally, the importance
of integrating production data is illustrated by performing reservoir
forecasts on the basis of on the constructed fine-scale reservoir
models.

The SSC Method
The available production data include pressurepi(t) and flow rate
Qi(t) with time t at a number of wellsi 5 1, . . . , nw (nw 5 the
number of wells). Our goal is to find a set of permeability values
for numerical cells in a reservoir model that matches the observed
pressure data under the given flow rate and boundary conditions.
This match is established by solving the single-phase, slightly
compressible flow equation,
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wherek 5 permeability,f 5 porosity, m 5 viscosity,h 5 the
thickness of the reservoir, andc 5 compressibility. The closeness
of the pressure match may be quantified by an objective function,
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wherepi
obs(t) and pi

cal(t) 5 observed and numerically calculated
pressure data at Welli at time,t, respectively;w(i , t) is the weight
assigned to the observed pressure datapi(t) according to its reli-
ability (accuracy).

The SSC method is an iterative geostatistically based method
coupled with an optimization procedure.3,13 Like geostatistical
approaches, the SSC method generates multiple, equally likely
realizations of permeability fields honoring different types of
available static and dynamic field data. The realizations honor a
specified histogram and variogram as modeled from the field data
and dynamic pressure data at multiple wells in the sense that the
numerical solution of the flow equations in each of the generated
realizations matches the measured pressure values at the same well
locations.

The unique aspects of the SSC method are the concept of master
points and a perturbation mechanism based on kriging. We propose
to extend the method for petroleum applications. As an overview,
the method can be described as follows (see alsoFig. 2). First, multiple,
initial permeability realizations are created by conventional geostatis-
tical techniques constrained to all static (hard and soft) data and the
specified permeability histogram and variogram. Each realization is
processed one at a time with the following steps:

1. Solve the flow equations for the current model by use of the
specified boundary and production rate conditions. A block-cen-
tered finite difference method with a direct matrix solver was used
to solve the flow equations in this study. Other numerical methods
can also be used for the same purpose.

2. Compare the observed and calculated pressure values at the
available wells and at the given time. If the difference is smaller
than a preselected tolerance value, this permeability realization is

considered to honor the dynamic pressure data, and the procedure
stops. Otherwise, proceed to the next step.

3. Select master points and solve an optimization problem to find
the optimal perturbations of permeability at the master point loca-
tions. The locations of the master points are randomly selected, and
the well locations having permeability data are automatically in-
cluded as master points. The number of master points is about one
master point per correlation range of the permeability variogram in
each direction. The optimal perturbations minimize the difference
between the observed and calculated pressures. The master point
concept reduces the space of parameters to be optimized, which
significantly improves the computational efficiency of the method.

4. Propagate the perturbation through the entire field by kriging
the optimal perturbations determined for the master point locations.
The permeability field is updated by adding the smooth perturbation
field to the previous permeability field. The variogram used to
generate initial models is the same as that used to propagate the
permeability perturbations at master points. This would likely
preserve the original spatial variation patterns in the permeabil-
ity field.

5. Loop back to Step 1 until convergence. Typically, fewer than
20 iterations are required.

Sensitivity coefficients (derivatives of pressure with respect to
the perturbation of permeability values) at all master point locations
at each timestep are needed when solving the optimization problem
by a gradient-based method. The efficient calculation of sensitivity
coefficients has received significant attention in the litera-
ture.4,8,14,15Appendix A presents an efficient way to obtain the
required sensitivity coefficients as part of the flow solution. Then,
a modified gradient projection method is used to obtain the optimal
perturbation values at the selected master locations by minimizing
the objective function, which is outlined in Appendix B.

It should be noted that the application of the SSC method requires
information on the distribution of permeability at the scale of the
numerical grid (histogram and variogram). Also, it assumes that the
permeability variation in the entire model is governed by a single
histogram and a single variogram model, which may limit its
application when the permeability variations in a reservoir are
caused by the mixture of multiple populations (e.g., controlled by
multiple lithofacies or channel objects) or when there are discon-
tinuous features such as faults, channels, or facies boundaries.
Furthermore, there is no direct control on the reproduction of the
variogram in the updated realizations. Although the variogram
models are well reproduced in all of our examples, a posterior check
is suggested to ensure that the appropriate inverse results are
obtained. Nevertheless, promising results have been obtained in

Fig. 1—The SSC method as an interpretative tool for the first
stage under the two-stage approach framework. The second
stage of constructing fine grid models accounting for the SSC
generated coarse grid models is a downscaling problem.

Fig. 2—Flow chart of the SSC method.
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groundwater hydrology by use of the SSC method with different
heterogeneity features, including the identification of nonmulti-
Gaussian features and high permeability flow channels.12,16-18

Application of the SSC Method
In this section, we use two synthetic examples to evaluate the ability
of the SSC method to generate 2D coarse-scale maps of perme-
ability from multiple well production data. In each example, first,
a reference permeability model is constructed, and then, the dy-
namic pressure responses at a number of wells, caused by changing
flow rates, are obtained by flow simulation. On the basis of the
dynamic flow rate and pressure data and information on the
permeability variogram, the SSC method is used to invert for
permeability fields that match the production data. Then, the
inverted permeability fields are compared with the reference field
to evaluate the capability of the SSC method.

Synthetic studies, in which the true permeability model and flow
responses are known with precision, make it possible to test the
effectiveness and relevance of the technique when only limited data
are available by comparing their results with the true reality.
Although this information obtained from such tests may be ex-
tremely valuable, it is not sufficient to conclude that the method will
perform with a similar degree of success when applied to real data.

Also, note that the application of the SSC method assumes that
the permeability field is spatially distributed following a single
distribution function that can be inferred from field data. A prior
model of the variogram must be assumed (or inferred) as well. We
will show later that the inversion results are robust to variations in
the assumed variogram.

Example 1. The first example is a 2D, 4,000-ft2 domain that is
discretized into 253 25 grid cells of 1603 160 ft. There is a high
permeability (500 md) band connecting the lower-left corner and
upper-right corner. The permeability in other areas is constant at 10
md (seeFig. 3). There are four wells: W1 at the center of the cell
(5, 21), W2 at (21, 21), W3 at (5, 5), and W4 at (21, 5). The four
boundaries are no-flow boundaries, porosity is assumed to be
constant at 0.2, reservoir thickness is 100 ft, viscosity is 0.2 cp,
formation compressibility is 1026 psi21, and well radius is 0.3 ft.

Fig. 4shows the imposed production rates and the corresponding
pressure responses at the different wells solved numerically. The
reason for the different shut-in times is to create some well
interference so that more information on spatial variations of
permeability is contained in the production data. Sensitivity studies,
too exhaustive for this paper, were performed with other production
scenarios.

On the basis of the production and pressure data at the four wells,
the SSC method was used to estimate the spatial distribution of
permeability within the domain by use of the same discretization.
Initially, a constant permeability with ln(k) 5 2 ln(md) was
assumed at all cells, an anisotropic variogram with very longcorrelation length (8,000 ft) in the 45° direction was assumed to be

accessible from other information. The sensitivity of the inverted
results to the selection of the anisotropy and initial permeability
model will be demonstrated later.

After 20 iterations (5 minutes on an SGI workstation), the
pressure responses in the updated permeability field converge to the
reference pressure data.Fig. 5 shows the resulting updated per-
meability field. The spatially connected high permeability band
connecting Wells W2 and W3 is clearly seen.Fig. 6 shows the
pressure values at the four wells computed from the initial uniform
permeability field and from the final updated permeability field
together with the true results from the reference field. The pressure
responses in the initial field deviate dramatically from the true
values because of the poor initial model; however, the permeability
field updated by the SSC method accurately reproduces the true
pressure data at all wells.

Because, in practice, the correct permeability variogram is rarely
known, the influence of variogram parameters on inverse results
was investigated. Also, the sensitivity of the inverse results to the
initial permeability values and the number of master points was
studied separately.Fig. 7 shows the inverse permeability fields by

Fig. 3—The reference deterministic permeability field: the first
example.

Fig. 4—The production data (left, rates; right, pressures) ob-
tained from the reference field: the first example.
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means of different variogram parameters (correlation range varying
from 1,000 to 8,000 ft and principal anisotropy direction varying
from 20 to 70°) and different initial permeability values (ranging
from ln(k) 5 0.5 to 10). In all cases, the high permeability band
is always retrieved with good matching of pressure data, indicating
the robustness of the SSC method.

Example 2. In the first example, the production data were com-
puted from a coarse grid reference model and the SSC method was
used to invert permeability fields on the same coarse grid. This
would not usually be the situation in field applications. A more
realistic test is to have the synthetic production data generated from
simulation by use of a fine grid reference model. Then, the inver-
sion technique is used to create coarse grid models, which are then
used as spatial constraints for the construction of high resolution
reservoir models (i.e., the two-stage approach, see Fig. 1).

In the second example, a 4,0003 4,000 ft 2D square domain was
discretized into a 1003 100 fine grid with cell size of 403 40 ft.
A reference permeability at this fine scale was generated by use of

sequential Gaussian simulation (seeFig. 8). The mean and variance
of ln(k) were 3.0 and 3.0, respectively. The variogram model used
to generate this reference field was anisotropic spherical, with
correlation ranges in the two principal directions of 1,700 and 350
ft. The bottom of Fig. 8 shows a coarse grid model (203 20) scaled
up by geometric averaging from the reference field. This scaled-up
coarse grid model is later used for visual comparison with the
inverse coarse grid results.

Three wells (W1, W2, and W3) located at the center of the
fine-scale cells (58, 88), (13, 43), and (88, 33) produced oil at
varying production rates, analogous to the first example.Fig. 9
shows the corresponding pressure responses. Note that Wells W2
and W3 were connected by relatively high permeabilities, whereas
Well W1 was located in a relatively low permeability region. Other
parameters used in solving the flow equation for pressure on the
fine (1003 100) were the same as in Example 1.

The SSC method generated coarse grid (203 20) permeability
realizations for which flow simulation matches the production data.
Fig. 10 shows three initial permeability realizations generated by
use of the sequential Gaussian simulation (left) and the correspond-
ing three updated realizations by the SSC method (right). The
statistics of the reference coarse grid model (i.e., the bottom of Fig.
8) are used for generating these realizations [i.e., mean and variance
of ln(k# v) are 3.0 and 2.03, respectively; correlation lengths are
1,800 and 400 ft inX andY directions, respectively]. We can see

Fig. 5—Final SSC-derived permeability field honoring pressure
data from reference permeability field (see Fig. 3).

Fig. 6—The pressure responses computed from one typical
initial (bullets) and updated (open circles) permeability fields
together with the true data (solid lines): the first example.

Fig. 7—Inverse permeability fields from the SSC method by use
of different variogram parameters and different initial values: the
first example.
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the large differences among the initial realizations, all of which
deviate significantly from the reference coarse grid model (shown
at the bottom of the figure). However, the spatial variation patterns
in the updated realizations are much closer to the reference field,
yet the difference from realization to realization is much smaller
compared with the initial realizations.Fig. 11 shows the pressure
responses computed from a typical initial realization and its cor-
responding updated permeability realization compared with the true
pressure data. The true pressure response is reproduced with high
accuracy by the updated field, whereas the initial field’s pressure
responses deviate significantly from the true data.

We generated 300 coarse grid ln(k# v) realizations by use of the
SSC method, from which the ensemble mean and standard devi-
ation fields were computed and compared with the 300 initial fields
(Fig. 12). Fig. 13shows the histograms of coarse grid permeability
values at two selected locations, A and B, (see Fig. 12) from the 300
initial and updated realizations. Fig. 12 shows the reduced standard
deviation (i.e., uncertainty) from the updated fields, particularly in
the areas around the wells. Even away from the wells, the updated
fields have lower standard deviations (e.g., Locations A and B in
Fig. 13).

Construction of Fine-Scale Permeability Models
With the SSC method, a series of equally likely realizations of
coarse grid permeability fields can be generated, all of which share
the same histogram, variogram, and production data. Usually, more
detailed geostatistical models are required for flow simulation
predictions of reservoir performance. In this section, we demon-

strate the promise of the two-stage approach to integrate production
data, with the SSC results as the first stage. Constructing fine-scale
models that honor the coarse grid realizations is a problem of
downscaling.

Simulated annealing is one method that can construct fine-scale
permeability models based on the coarse grid realizations as well
as honor information on the histogram and variogram of fine-scale
permeability.19 Our first approach was to use annealing by adding
an additional component to the objective function to represent the
difference between the coarse grid permeability values and the
power averages of fine-scale permeabilities within the same coarse
block, i.e.,

Omw 5 O
i51

ncoarse grid

@k#v~ui! 2 k#*v~ui!#
2, . . . . . . . . . . . . . . . . . . . . . . (3)

where ncoarse grid 5 the number of blocks on coarse grid model,
k# v(ui) 5 the inverse permeability value at coarse blockui, and
k#*v(ui) 5 the v power average of fine grid permeability values
within the coarse blockui, which is given as

k#*v~ui! 5 F1

N O
ui[V

k~ui!
vG1/v

, . . . . . . . . . . . . . . . . . . . . . . . . . (4)

whereN 5 the number of fine grid cells within a coarse blockV.
Different fine grid permeability models can be constructed, each of
which matches the corresponding coarse grid permeability realiza-
tion. The value ofv should be calibrated from the corresponding
upscaling procedure, which is out of the scope of this study.

Fig. 8—(a) The reference permeability field at fine scale. (b) The
scaled up coarse grid permeability model: the second example.

Fig. 9—The production data (left, rates; right, pressures) ob-
tained from the reference field at fine scale: the second example.
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Fig. 14 shows two realizations of fine grid (1003 100) perme-
ability generated by this annealing technique and compared with the
corresponding coarse grid (203 20) images from the SSC inver-
sion in the second example. The objective function in the annealing
process includes histogram, variogram, and coarse grid permeabil-
ity (i.e., Eq. 3). The histogram and variogram used to construct the
fine grid models were taken from the fine grid reference model and
geometric averaging (v3 0) was used. Other types of data (e.g.,
seismic data) could also be honored at this stage.

To check whether the fine grid permeability models still repro-
duce the dynamic production data, the pressure responses at the
wells were solved on the two fine grid models shown in Fig. 14.Fig.
15 shows the results (open circles) compared with the true re-
sponses from the reference field (solid lines) and the responses from
the coarse grid model (bullets). The pressure responses are closely
reproduced in the annealing-based fine grid permeability models.
This indicates the promise of the two-stage geological coding
approach to integrate production data.

An alternative and more sophisticated approach for constructing
fine grid models by use of the coarse grid spatial representations is
to compute local conditional distributions of coarse grid perme-
ability at each coarse gridblock as given in Fig. 13, then use

simulated annealing or other geostatistical methods to construct
fine grid models integrating these probability constraints of the
coarse grid values.20 Nevertheless, the simpler approach presented
earlier may see more extensive use in practice.

Improvement of Performance Prediction From
Production Data Integration
Finally, we demonstrate the importance of integrating production
data by predicting the reservoir performance in Example 2 by use
of two sets of fine-scale (1003 100) geostatistical models: one
generated by the sequential Gaussian simulation not accounting for
the production data and the other generated by simulated annealing
accounting for the coarse-scale spatial representations derived from
the production data as discussed previously. On the right of Fig. 14
two realizations of the second model are shown. The reservoir was

Fig. 10—Three initial permeability realizations (left) and the cor-
responding updated fields (right) from the SSC method.

Fig. 11—The pressure responses computed from the typical
initial and updated permeability fields together with the true data
in a typical realization: the second example.

Fig. 12—The ensemble averaged permeability field (left) and the
corresponding standard deviations (right) from 300 initial (top)
and updated (bottom) realizations: the second example.

349SPE Journal, December 1998



under single-phase production before 120 days. The pressure data
of the 120-day production were matched in the second model. At
120 days, a water injection well located at the center of Cell (50, 49)
began injecting water at a constant rate of 20,000 B/D (see Fig. 14).
The three wells (W1, W2, and W3) were producing with constant
pressure of 1,000 psi.

Figs. 16 and 17show the comparisons of predicted total pro-
duced oil and water cuts in three wells (W1, W2, and W3) from 30
realizations of both models, respectively. The true results computed
from the reference fine-scale model are plotted as the thick, light
curves. It is evident that the reservoir models not conditioned to the
production data overpredict oil production rates, severely overpre-

Fig. 13—The histograms of coarse grid permeability values at Locations A and
B (see Fig. 12) computed from 300 initial (left) and updated (right) realizations:
the second example. The bullets are the values from the reference coarse field
at the same locations.

Fig. 14—Two realizations of fine grid models (right), constructed by the simulated annealing method,
that honor the coarse grid models generated by the SSC method (left).
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dict water cuts at W1, and underpredict water cuts at W2 and W3
with large uncertainty. When the production data are integrated, the
predicted performance is much closer to the true results with
significantly less uncertainty. The low permeability barrier in the
reference fine grid model between the injection well and W1 is not
well captured in the inverse coarse grid models. Also, the variogram
distance between the injection well and W1 is larger than other well
pairs, so there are more permeability variations between these two
wells. These may explain why the predictions are so far from the
true results in W1 compared with the results at W2 and W3.

Fig. 18shows the histograms of total oil production rates of the
entire field (the top row) as well as the water cuts at individual wells
(the bottom three rows) from 200 unconditioned and conditioned
models when the injected water is at pore volume injected (PVI) of
1.0. The true values from the reference field are shown in the same
figure by bullets. It is clearly shown that integrating production data
shows significant improvement in forecasting results in terms of
accuracy and uncertainty.

Conclusions
The SSC method appears to be flexible and computationally effi-
cient for integrating single-phase multiple well pressure/rate data.
It is well suited as an interpretive tool for extracting spatial
representations (i.e., 2D coarse grid models) from production data

for the two-stage approach. Results from the synthetic examples
further indicate that the two-stage approach has promise to integrate
production data. Reservoir performance predictions show that the
integration of production data can dramatically improve accuracy
and reduce uncertainty of reservoir simulation predictions for
reservoir management.

Extensive work is required to explore the limits of the SSC
method and to establish the practical range of application. Ongoing
research will investigate the integration of multiple-phase produc-
tion data and extensions of these methods to coarse-scale models
with different lithofacies and to three-dimensional models. A
method of analyzing the degree of interference of production data
from different wells may also be useful to guide the selection of
production data used in the inversion to increase the computational
efficiency.

Nomenclature
[A] 5 transmissibility matrix
[B] 5 right hand side of discretized flow equation

c 5 formation compressibility, psi21

h 5 thickness of reservoir, ft
k 5 permeability, md

k# v 5 coarse grid permeability from inversion, md
k#*v 5 power average of fine grid permeability, md

Fig. 15—The comparison of pressure responses computed from
the two fine and coarse grid models shown in Fig. 14 to the true
results.

Fig. 16—The total oil production rates at the producing wells
from 30 unconditioned (left) and conditioned (right) realizations.
The thick light curves are results from the reference true field.
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kkrig 5 kriging estimation of permeability, md
nm 5 number of master points
nt 5 number of timesteps
nw 5 number of wells
N 5 number of fine grid cells in a coarse block
O 5 objective function
p 5 pressure, psi
Q 5 production rate, B/D

{ S} 5 sensitivity coefficient vector
t 5 time, days

V 5 volume of coarse gridblock
[W] 5 inverse covariance of observation errors

a 5 amplitude factor for constraint interval
b 5 moving step in updating parameters

Dk 5 permeability perturbation, md
m 5 viscosity, cp

skrig 5 standard deviation of kriging estimation
f 5 porosity
v 5 averaging power

Superscript
cal 5 calculated
obs 5 observed
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Appendix A—Calculation of Sensitivity Coefficients
Discretization of the Flow Eq. 1, with an implicit scheme leads to
the matrix notation

@A#$p%t11 5 @B#$p%t 1 $ f %t, . . . . . . . . . . . . . . . . . . . . . . .(A-1)

where [A] 5 the transmissibility matrix that accounts for spatial
and time discretizations, as well as boundary conditions, [B] 5
[hcf]/Dtt11, and { f} t 5 the right hand side matrix that accounts
for the load vector (production or injection) and flow boundary
conditions. The solution of pressure at timet 1 1 is obtained by
inverting matrix [A], that is,

$p%t11 5 @A#21@B#$p%t 1 @A#21$ f %t. . . . . . . . . . . . . . . . . .(A-2)

Fig. 18—The histograms of total oil produced (top row) and water cuts at three wells (bottom 3 rows)
from 200 unconditioned (left) and conditioned (right) realizations when the injected water is at pore
volume injected of 1.0. Bullets are the true results from the reference field.
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The sensitivity coefficients at timestept 1 1 can be calculated
right after the pressure at timet 1 1 is obtained. The perturbation
of parameterkm can be written as

@A#
­$p%t11

­Dkm
1

­@A#

­Dkm
$P%t11

5
­@B#

­Dkm
$p%t 1 @B#

­$p%t

­Dkm
1

­$ f%t

­Dkm
, m5 1, . . . ,nm, (A-3)

wherenm 5 total number of master points, thus,

­$P%t11

­Dkm
5

­@B#

­Dkm
$p%t 1 @B#

­$p%t

­Dkm

1
­$ f %t

­Dkm
2

­@A#

­Dkm
$p%t11, m5 1, . . . ,nm. . . . . . .(A-4)

Note that Eq. A-4 has the same form as Eq. A-1 and matrix [A] has
just been inverted when solving for the pressure {p} t11. The
sensitivity coefficients can be obtained at the same timestep,t 1 1,
by simple matrix operations, that is,

sm,t11 5
­$p%t11

­Dkm
5 @A#21@B#

­$p%t

­Dkm
1 @A#21

­@B#

­Dkm
$p%t

1 @A#21
­$ f %t

­Dkm
2 @A#21

­@A#

­Dkm
$P%t11, m5 1, . . . ,nm.

. . . . . . . . . . . . . . . . . . . . . . . . . .(A-5)

The elements of matrices­[A]/­Dkm, ­[B]/­Dkm, and­{ f} t/­Dkm

can be directly computed from the expressions of elements in
matrices [A], [B], and { f}. ­{ P} 0/­Dkm 5 0.

The efficient calculation of sensitivity coefficients has received
significant attention in the literature.4,8,14,15

Appendix B—Minimization of Objective Function
The objective function given in Eq. 2 can be written in the matrix
form

O~$pcal%! 5 O
t51

nt

~$pcal%t 2 $pobs%t!
T@W#t~$pcal%t 2 $pobs%t!, . . . . .(B-1)

where {pcal} t 5 { pt,1
cal, pt,2

cal, . . . , pt,nw
cal } and { pobs} t 5 { pt,1

obs,
pt,2

obs, . . . , pt,nw
obs} are the numerically calculated and observed

pressures at Welli 5 1, . . . , nw and timet 5 t1, . . . , tn. [W] t

is the inverse covariance matrix of observation errors at timet. If
pressure measurement errors at different wells are independent,
[W] t is a diagonal matrix with the form

@W#t 5 3
w1,t

w2,t

· · ·
wnw,t

4. . . . . . . . . . . . . . . . . .(B-2)

Objective function (Eq. B-1) is a nonlinear function of the model
parameters we need to compute (i.e., the perturbations of perme-
ability at master locations, {M} 5 { Dk1, Dk2, . . . , Dknm}). We
linearize the objective function by approximating the pressure data
by retaining its first order Taylor expansion, i.e.,

$pcal%t
1 < $pcal%t

0 1
­$p%t

­$M%
$M%, . . . . . . . . . . . . . . . . . . . . .(B-3)

where {S} t 5 ­{ p} t/­{ M} 5 { s1,t, s2,t, . . . , snm,t} is the
sensitivity vector at timet with respect to the permeability pertur-
bation at Locationm computed as presented in Appendix A, with
sm,t 5 ­{ p} t/­{ Dkm}. { pcal} t

0 and {pcal} t
1 are pressure values at

timet before and after introducing a perturbation matrix {M}. With

this linear approximation, after some manipulation, we can write
our objective function (Eq. B-1) as

O~$pcal%1! 5 O~$pcal%0!

1 O
t51

nt

$D%t
T$M% 1 O

t51

nt

$M%T@C#t$M%, . . . . . . . . . . .(B-4)

where the elements of matrices {D} t and {C} t are expressed as

dk,t 5 2~$pcal%t 2 $pobs%t!
T@W#t$S%t . . . . . . . . . . . . . . . . . . . .(B-5)

and ck1k2,t 5 ~$S%t!
T@W#t$S%t. . . . . . . . . . . . . . . . . . . . . . . . .(B-6)

The constraints used for minimizing the objective function (Eq.
B-4) are simply the possible minimum and maximum values of
perturbations, i.e.,

$Dkmin% % $M% % $Dkmax% . . . . . . . . . . . . . . . . . . . . . . . . . .(B-7)

that is

@I#$M% % $Dkmax% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(B-8)

and 2@I#$M% % $Dkmin% , . . . . . . . . . . . . . . . . . . . . . . . . . .(B-9)

where [I ] 5 annm 3 nm identity matrix, {Dkmin} 5 min{ k0, kkrig 2
askrig} and {skmax} 5 max{k0, kkrig 1 askrig}. { k0} 5 the vector
of permeability values at master points in the initial field, {kkrig}
and {skrig} 5 kriging estimations and the corresponding kriging
standard deviations, respectively, at the master points, based on
available measured permeability data. If there are no priork
measurements, {kkrig} and {skrig} can be selected as the mean and
standard deviation of the desired permeability histogram.a 5 a
constant value that specifies the interval size of the constraints.

This formulation is a standard quadratic optimization problem.
In the current SSC code, we solve this optimization problem with
a modified gradient projection method to take advantage of the
simple expression of constraints expressed in Eqs. B-8 and B-9. At
each iteration of the optimization process, the search direction is
obtained by projecting the gradient of the objective function on the
null space of the gradients of the binding constraints (see Ref. 3 for
details).

SI Metric Conversion Factors
bbl 3 1.589 873 E201 5 m3

cp 3 1.0* E203 5 Pazs
ft 3 3.048* E201 5 m

ft2 3 9.290 304* E202 5 m2

psi 3 6.894 757 E100 5 kPa

*Conversion factors are exact. SPEJ
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