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Summary Production data and reservoir petrophysical properties are related

This paper presents a method to generate maps of high resolufi@¢ach other through flow equations, which are highly nonlinear.
permeability from multiple well single-phase flow rate and pressufs & consequence, accounting for dynamic engineering data in
data. The dynamic (i.e., temporal) production data contain impdieostatistical reservoir modeling is a difficult inverse probkem.
tant information about the interwell permeability distribution thalevertheless, historical production data are often the most impor-
should be integrated with static data, such as well and seismic dd@it information because they provide a direct measure of the actual
to generate reservoir models to provide reliable input to reservé@Servoir response to the recovery process that forms the basis for
simulation and reservoir management. A two-step procedure@servoir management decisions. Integrating dynamic production data
proposed for such data integration: establish the spatial constraifitan important outstanding problem in reservoir characterization.
on large-scale permeability trends caused by the production data bydeally, we want to match all types of production data in the
means of an inverse technique and construct the detailed geost48§ervoir model at the required resolution directly and simulta-
tical reservoir models subject to those spatial constraints by med@pusly with other types of geological and geophysical data. A
of geostatistical techniques. The single-phase pressure and prodlnber of inverse techniques have been developed for this pur-
tion data could be provided by permanent pressure gauges, sinR@se?+¢1° Direct integration at the fine scale is not feasible
taneous multiple well tests, or flow rates under primary depletioRecause the mathematical inversion of the flow equations is com-
Production data and reservoir petrophysical properties, specRutationally intensive, pressure and production data measured at the
cally permeability, are nonlinearly related through flow equation¥vells are responding to the spatial variation of larger-scale effective
Establishing the spatial constraints on permeability resulting fropfoperties, and it is difficult to match production data simulta-
production data calls for the solution of a difficult inverse problenfieously with other static geological and geophysical data. Because
This paper adapts the sequential self-calibration (SSC) inve@ethese limitations, currently available inverse techniques are
technique to single-phase multiple-well transient pressure and pliited to constructing relatively coarse-scale models.
duction rate data. The SSC method is an iterative geostatisticallyThe coarse grid models that could be constructed by direct
based inverse method coupled with an optimization procedure tifaersion techniques are usually inadequate for reliable production
generates a series of coarse grid two-dimensional (2D) permeabiff@jecasting. In many practical situations, while keeping models as
realizations whose numerical flow simulations correctly reprodudmple as possible, we would like to create highly resolved models
the production data. Inverse results with two synthetic data sé@klithofacies, porosity, and permeability. Our proposal, therefore,
show that this SSC implementation is flexible, computationallip & two-stage approach where we establish the spatial constraints
efficient, and robust. on large-scale permeability trends caused by the production data
Fine-scale models generated by downscaling the SSC generatgd of an inverse technique and construct the detailed geostatis-
coarse-scale models (by simulated annealing) are shown to presdi&@ models subject to those spatial constraints and the static
the match to the production data at the coarse scale. Finafigta as well. , . .
reservoir performance prediction results show how the integrationA review of available inverse techniques has been presented in
of production data can dramatically improve the accuracy @Ur previous papett In this paper, the SSC inverse technigée

production forecasting with significantly less uncertainty. is adapted to invert permeability distribution from multiple well,
single-phase production data. Under the two-stage approach frame-
Introduction work, the SSC method is considered to be an interpretative tool of

Obtimal reservoir management requires reliable performance fOco_ding production data into spatial constraints of permeability (i.e.,
P g q P tf multiple realizations of coarse grid permeability models) for the

casts with as little uncertainty as possible. Incomplete data apdy 5156 (seerig. 1). Then, an annealing-based geostatistical
inability to mode_l the physics pf flwd'flow ataswtably smqll S.Ca"? chnique is used to construct high resolution reservoir models
lead to uncertainty. Uncertainties in the detailed description f,tained to the SSC generated coarse grid models for the second

reservoir lithofacies, porosity, and permeability are large contriliy, o “The application of the SSC method to synthetic data sets
utors to uncertainty in reservoir performa_nce fore_castmg._Reduu 8cuments the utility and robustness of the method in generating
this uncertainty can be achieved only by integrating additional d

in reservoir modelin Barse-scale permeability models. The ability to use the coarse grid
) 9. - . models to generate fine-scale permeability models that preserve the
A large variety of geostatistical techniques have been develo

that construct reservoir models conditioned to diverse types of stp i'ctCh of the production data is illustrated. Finally, the importance
data, including hard well data and soft seismic daommonly, integrating production data is illustrated by performing reservoir

. . . forecasts on the basis of on the constructed fine-scale reservoir
a number of techniques are applied sequentially to model the lar dels

reservoir geometry; the lithofacies; and then the petrophysica
properties, such as porosity and permeability. However, conven-
tional geostatistical techniques, including Gaussian, indicator, &hhe SSC Method

nealing-based, or object-based methods, are not suited to integraig available production data include pressy(€) and flow rate
dynamic production data directly. Q;(t) with time t at a number of well$ = 1, ..., n, (n, = the
number of wells). Our goal is to find a set of permeability values
for numerical cells in a reservoir model that matches the observed
*Now with Chevron Petroleum Technology Co. pressure data under the given flow rate and boundary conditions.
This match is established by solving the single-phase, slightly
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Fig. 2—Flow chart of the SSC method.

L L L considered to honor the dynamic pressure data, and the procedure
stops. Otherwise, proceed to the next step.

3. Select master points and solve an optimization problem to find
the optimal perturbations of permeability at the master point loca-
tions. The locations of the master points are randomly selected, and
the well locations having permeability data are automatically in-
cluded as master points. The number of master points is about one
master point per correlation range of the permeability variogram in
each direction. The optimal perturbations minimize the difference
wherek = permeability, = porosity, u = viscosity,h = the between the observed and calculated pressures. The master point

thickness of the reservoir, amd= compressibility. The closenessconcept reduces the space of parameters to be optimized, which

of the pressure match may be quantified by an objective functiotignificantly improves the computational efficiency of the method.
4. Propagate the perturbation through the entire field by kriging

O=> > Wi, )PPt — PO . .o (2) the optimal perturbations determined for the master point locations.
Pt The permeability field is updated by adding the smooth perturbation
field to the previous permeability field. The variogram used to
wherep°®yt) and pf?'(t) = observed and numerically calculatedgenerate initial models is the same as that used to propagate the
pressure data at Wellt time,t, respectivelyw(i, t) is the weight permeability perturbations at master points. This would likely
assigned to the observed pressure ggt§ according to its reli- preserve the original spatial variation patterns in the permeabil-
ability (accuracy). ity field.
The SSC method is an iterative geostatistically based methodb. Loop back to Step 1 until convergence. Typically, fewer than
coupled with an optimization proceduté3 Like geostatistical 20 iterations are required.
approaches, the SSC method generates multiple, equally likelySensitivity coefficients (derivatives of pressure with respect to
realizations of permeability fields honoring different types ofhe perturbation of permeability values) at all master point locations
available static and dynamic field data. The realizations honoraaeach timestep are needed when solving the optimization problem
specified histogram and variogram as modeled from the field daig a gradient-based method. The efficient calculation of sensitivity
and dynamic pressure data at multiple wells in the sense that ttwefficients has received significant attention in the litera-
numerical solution of the flow equations in each of the generatédre# 8.14.25 Appendix A presents an efficient way to obtain the
realizations matches the measured pressure values at the samenegllired sensitivity coefficients as part of the flow solution. Then,
locations. a modified gradient projection method is used to obtain the optimal
The unique aspects of the SSC method are the concept of magtnturbation values at the selected master locations by minimizing
points and a perturbation mechanism based on kriging. We propaise objective function, which is outlined in Appendix B.
to extend the method for petroleum applications. As an overview, It should be noted that the application of the SSC method requires
the method can be described as follows (seefts®). First, multiple, information on the distribution of permeability at the scale of the
initial permeability realizations are created by conventional geostatisamerical grid (histogram and variogram). Also, it assumes that the
tical techniques constrained to all static (hard and soft) data and frermeability variation in the entire model is governed by a single
specified permeability histogram and variogram. Each realizationhéstogram and a single variogram model, which may limit its
processed one at a time with the following steps: application when the permeability variations in a reservoir are
1. Solve the flow equations for the current model by use of thmaused by the mixture of multiple populations (e.g., controlled by
specified boundary and production rate conditions. A block-cemultiple lithofacies or channel objects) or when there are discon-
tered finite difference method with a direct matrix solver was usdthuous features such as faults, channels, or facies boundaries.
to solve the flow equations in this study. Other numerical methodairthermore, there is no direct control on the reproduction of the
can also be used for the same purpose. variogram in the updated realizations. Although the variogram
2. Compare the observed and calculated pressure values atrttualels are well reproduced in all of our examples, a posterior check
available wells and at the given time. If the difference is smallés suggested to ensure that the appropriate inverse results are
than a preselected tolerance value, this permeability realizatioroistained. Nevertheless, promising results have been obtained in

Fig. 1—The SSC method as an interpretative tool for the first
stage under the two-stage approach framework. The second
stage of constructing fine grid models accounting for the SSC
generated coarse grid models is a downscaling problem.
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groundwater hydrology by use of the SSC method with different
heterogeneity features, including the identification of nonmulti- ]
Gaussian features and high permeability flow chaniels:18

Application of the SSC Method

Flowrate at Well 1

In this section, we use two synthetic examples to evaluate the ability
of the SSC method to generate 2D coarse-scale maps of pernte-,]
ability from multiple well production data. In each example, first,

a reference permeability model is constructed, and then, the dy- _

namic pressure responses at a number of wells, caused by changing ¢

flow rates, are obtained by flow simulation. On the basis of the
dynamic flow rate and pressure data and information on the
permeability variogram, the SSC method is used to invert for *q
permeability fields that match the production data. Then, the
inverted permeability fields are compared with the reference fleld a0
to evaluate the capablllty of the SSC method.

Synthetic studies, in which the true permeability model and flovvfl 200]
responses are known with precision, make it possible to test t@
effectiveness and relevance of the technique when only limited dataiw
are available by comparing their results with the true reality.
Although this information obtained from such tests may be ex-

tremely valuable, it is not sufficient to conclude that the method will
perform with a similar degree of success when applied to real data.
Also, note that the application of the SSC method assumes that
the permeability field is spatially distributed following a single
distribution function that can be inferred from field data. A prior
model of the variogram must be assumed (or inferred) as well. We **
will show later that the inversion results are robust to variations |r§
the assumed variogram. s 2]

Example 1. The first example is a 2D, 4,000*fdomain that is
discretized into 25< 25 grid cells of 160 160 ft. There is a high

permeability (500 md) band connecting the lower-left corner and °%

upper-right corner. The permeability in other areas is constant at 10
md (seeFig. 3). There are four wells: W1 at the center of the cell
(5, 21), W2 at (21, 21), W3 at (5, 5), and W4 at (21, 5). The four
boundaries are no-flow boundaries, porosity is assumed to be
constant at 0.2, reservoir thickness is 100 ft, viscosity is 0.2 cp,
formation compressibility is 10 psi?, and well radius is 0.3 ft. &
Fig. 4 shows the imposed production rates and the correspondlr?!’g
pressure responses at the different wells solved numerically. The ™
reason for the different shut-in times is to create some wel§
interference so that more information on spatial variations of
permeability is contained in the production data. Sensitivity studies,

too exhaustive for this paper, were performed with other production °°F

scenarios.
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On the basis of the production and pressure data at the four weIIs
the SSC method was used to estimate the spatial distributionFig- 4 —The production data (left, rates; right, pressures) ob-
permeability within the domain by use of the same discretizatiofined from the reference field: the first example.

Initially, a constant permeability with Ikj = 2 In(md) was

assumed at all cells, an anisotropic variogram with very lon&)rrelation length (8,000 ft) in the 45°

Reference Ln(K) Field: Example 1

X oot
Fig. 3—The reference deterministic permeability field: the first
example.

346

direction was assumed to be
accessible from other information. The sensitivity of the inverted
results to the selection of the anisotropy and initial permeability
model will be demonstrated later.

After 20 iterations (5 minutes on an SGI workstation), the
pressure responses in the updated permeability field converge to the
reference pressure datéig. 5 shows the resulting updated per-
meability field. The spatially connected high permeability band
connecting Wells W2 and W3 is clearly sedfig. 6 shows the
pressure values at the four wells computed from the initial uniform
permeability field and from the final updated permeability field
together with the true results from the reference field. The pressure
responses in the initial field deviate dramatically from the true
values because of the poor initial model; however, the permeability
field updated by the SSC method accurately reproduces the true
pressure data at all wells.

Because, in practice, the correct permeability variogram is rarely
known, the influence of variogram parameters on inverse results
was investigated. Also, the sensitivity of the inverse results to the
initial permeability values and the number of master points was
studied separatel¥ig. 7 shows the inverse permeability fields by

SPE Journal, December 1998



the SSC Method

Retorence Ln(K) Field {Angle=45, range=8000, initial In(k)=2)
000 T

Fig. 5—Final SSC-derived permeability field honoring pressure
data from reference permeability field (see Fig. 3).
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sequential Gaussian simulation ($&g. 8). The mean and variance
Fig. 6 —The pressure responses computed from one typical Of In(k) were 3.0 and 3.0, respectively. The variogram model used
initial (bullets) and updated (open circles) permeability fields (O generate this reference field was anisotropic spherical, with
together with the true data (solid lines): the first example. correlation ranges in the two principal directions of 1,700 and 350
ft. The bottom of Fig. 8 shows a coarse grid model ¥220) scaled
) ] ) up by geometric averaging from the reference field. This scaled-up
means of different variogram parameters (correlation range varyiggarse grid model is later used for visual comparison with the
from 1,000 to 8,000 ft and principal anisotropy direction varyinghyerse coarse grid results.
from 20 to 70°) and different initial permeability values (ranging Three wells (W1, W2, and W3) located at the center of the
from In(k) = 0.5 to 10). In all cases, the high permeability bangine-scale cells (58, 88), (13, 43), and (88, 33) produced oil at
is always retrieved with good matching of pressure data, indicatingrying production rates, analogous to the first examplg. 9
the robustness of the SSC method. shows the corresponding pressure responses. Note that Wells W2
and W3 were connected by relatively high permeabilities, whereas
Example 2. In the first example, the production data were comWell W1 was located in a relatively low permeability region. Other
puted from a coarse grid reference model and the SSC method \wasameters used in solving the flow equation for pressure on the
used to invert permeability fields on the same coarse grid. THise (100 X 100) were the same as in Example 1.
would not usually be the situation in field applications. A more The SSC method generated coarse grid X220) permeability
realistic test is to have the synthetic production data generated froalizations for which flow simulation matches the production data.
simulation by use of a fine grid reference model. Then, the invelrig. 10 shows three initial permeability realizations generated by
sion technique is used to create coarse grid models, which are tlise of the sequential Gaussian simulation (left) and the correspond-
used as spatial constraints for the construction of high resolutiorg three updated realizations by the SSC method (right). The
reservoir models (i.e., the two-stage approach, see Fig. 1).  statistics of the reference coarse grid model (i.e., the bottom of Fig.
In the second example, a 4,0804,000 ft 2D square domain was 8) are used for generating these realizations [i.e., mean and variance
discretized into a 10 100 fine grid with cell size of 40< 40 ft.  of In(k,) are 3.0 and 2.03, respectively; correlation lengths are
A reference permeability at this fine scale was generated by uselg800 and 400 ft irK andY directions, respectively]. We can see
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Fig. 9 —The production data (left, rates; right, pressures) ob-

Fig. 8 —(a) The reference permeability field at fine scale. (b) The  i5ined from the reference field at fine scale: the second example.

scaled up coarse grid permeability model: the second example.

strate the promise of the two-stage approach to integrate production
the large differences among the initial realizations, all of whicHata, with the SSC results as the first stage. Constructing fine-scale
deviate significantly from the reference coarse grid model (shownodels that honor the coarse grid realizations is a problem of
at the bottom of the figure). However, the spatial variation patterg®wnscaling.
in the updated realizations are much closer to the reference fieldSimulated annealing is one method that can construct fine-scale
yet the difference from realization to realization is much smallgrermeability models based on the coarse grid realizations as well
compared with the initial realization&ig. 11 shows the pressure as honor information on the histogram and variogram of fine-scale
responses computed from a typical initial realization and its copermeability*® Our first approach was to use annealing by adding
responding updated permeability realization compared with the tré additional component to the objective function to represent the
pressure data. The true pressure response is reproduced with Wiiffierence between the coarse grid permeability values and the
accuracy by the updated field, whereas the initial field’s pressupewer averages of fine-scale permeabilities within the same coarse
responses deviate significantly from the true data. block, i.e.,

We generated 300 coarse gridK)( realizations by use of the Reoarse grid

SSC method, from which the ensemble mean and standard devig _ S Tk(u) — KU
ation fields were computed and compared with the 300 initial fields ~™" : Vi
(Fig. 12). Fig. 13shows the histograms of coarse grid permeability

values at two selected locations, A and B, (see Fig. 12) from the 3@Bere Neoarse i = the number of blocks on coarse grid model,
initial and updated realizations. Fig. 12 shows the reduced standgil) = the inverse permeability value at coarse blagk and
deviation (i.e., uncertainty) from the updated fields, particularly |ﬂ"f/ u;) = the o power average of fine grid permeability values
the areas around the wells. Even away from the wells, the updaigghin the coarse blocki,, which is given as

fields have lower standard deviations (e.g., Locations A and B in Ny
- 1 @
WF%ZWH, ......................... (4)

i=1

Fig. 13).
uiev

Construction of Fine-Scale Permeability Models

With the SSC method, a series of equally likely realizations afhereN = the number of fine grid cells within a coarse blogk
coarse grid permeability fields can be generated, all of which shdéferent fine grid permeability models can be constructed, each of
the same histogram, variogram, and production data. Usually, mevkich matches the corresponding coarse grid permeability realiza-
detailed geostatistical models are required for flow simulatiotion. The value ofw should be calibrated from the corresponding
predictions of reservoir performance. In this section, we demoupscaling procedure, which is out of the scope of this study.
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Fig. 11—The pressure responses computed from the typical
initial and updated permeability fields together with the true data
in a typical realization: the second example.
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Fig. 14 shows two realizations of fine grid (100 100) perme- . 2
ability generated by this annealing technique and compared with the L
corresponding coarse grid (20 20) images from the SSC inver- Fig- 12—Th? ensemble avera_ge_d pern?eablllty field (Igft_) _and the
sion in the second example. The objective function in the annealifgfresponding standard deviations (right) from 300 initial (top)
process includes histogram, variogram, and coarse grid permeaffid updated (bottom) realizations: the second example.
ity (i.e., Eq. 3). The histogram and variogram used to construct the
fine grid models were taken from the fine grid reference model and

geometric averaging{— 0) was used. Other types of data (e_g_3|mulated annealing or other geostatistical methods to construct
seismic data) could also be honored at this stage. fine grid models integrating these probability constraints of the

To check whether the fine grid permeability models still reprof02arse grid value® Nevertheless, the simpler approach presented

duce the dynamic production data, the pressure responses at&fiier may see more extensive use in practice.

wells were solved on the two fine grid models shown in Fig Fig. Lo

15 shows the results (open circles) compared with the true finprovement of Performance Prediction From

sponses from the reference field (solid lines) and the responses flBFpduction Data Integration

the coarse grid model (bullets). The pressure responses are closéhally, we demonstrate the importance of integrating production

reproduced in the annealing-based fine grid permeability modetfata by predicting the reservoir performance in Example 2 by use

This indicates the promise of the two-stage geological codirgf two sets of fine-scale (10& 100) geostatistical models: one

approach to integrate production data. generated by the sequential Gaussian simulation not accounting for
An alternative and more sophisticated approach for constructitige production data and the other generated by simulated annealing

fine grid models by use of the coarse grid spatial representationgixounting for the coarse-scale spatial representations derived from

to compute local conditional distributions of coarse grid perméhe production data as discussed previously. On the right of Fig. 14

ability at each coarse gridblock as given in Fig. 13, then ugwo realizations of the second model are shown. The reservoir was
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Fig. 13—The histograms of coarse grid permeability values at Locations A and
B (see Fig. 12) computed from 300 initial (left) and updated (right) realizations:
the second example. The bullets are the values from the reference coarse field
at the same locations.
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& 3.13- 362 @ 3.33- 380
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@ 1.89- 229 @ 1.58- 210
o 1.17- 189 o 0.87- 159
5 0 -0.57-1a7 0 . .- ; O -275- 0.87
1] 2000 4000 1] 2000 4000
X (leet) X (feet)

Fig. 14 —Two realizations of fine grid models (right), constructed by the simulated annealing method,
that honor the coarse grid models generated by the SSC method (left).

under single-phase production before 120 days. The pressure daféigs. 16 and 17show the comparisons of predicted total pro-
of the 120-day production were matched in the second model. éaiced oil and water cuts in three wells (W1, W2, and W3) from 30
120 days, a water injection well located at the center of Cell (50, 48alizations of both models, respectively. The true results computed
began injecting water at a constant rate of 20,000 B/D (see Fig. 1#hm the reference fine-scale model are plotted as the thick, light
The three wells (W1, W2, and W3) were producing with constarurves. It is evident that the reservoir models not conditioned to the
pressure of 1,000 psi. production data overpredict oil production rates, severely overpre-
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Fig. 16 —The total oil production rates at the producing wells
from 30 unconditioned (left) and conditioned (right) realizations.
The thick light curves are results from the reference true field.

Fig. 15—The comparison of pressure responses computed from
the two fine and coarse grid models shown in Fig. 14 to the true
results.

dict water cuts at W1, and underpredict water cuts at W2 and { the_twc_)-stage approach. Results from the synth_etic examples
with large uncertainty. When the production data are integrated, t ther |_nd|cate that the two-stage approach ha_s promise to integrate
predicted performance is much closer to the true results wiHﬁOd“Ct!o” data. Reservow performance predlct_lons show that the
significantly less uncertainty. The low permeability barrier in thgﬂegratlon of produc_tlon data can d(am_atlcally IMprove accuracy
reference fine grid model between the injection well and W1 is ng{'d reduce uncertainty of reservoir simulation predictions for
well captured in the inverse coarse grid models. Also, the variogrz{ﬁ*ﬁervo'r management. -
distance between the injection well and W1 is larger than otherwellEXtenSIVe work |s_reqU|red to_explore the I|m|_ts Qf the SS.C
pairs, so there are more permeability variations between these tiginod and to establish the practical range of application. Ongoing
wells. These may explain why the predictions are so far from t gsearch will investigate the integration of multiple-phase produc-
true results in W1 compared with the results at W2 and W3. lon da_ta and extensions of these metths to c_oarse-scale models
Fig. 18 shows the histograms of total oil production rates of th\@”th different I|th_ofaC|es and to t_hree-dlmensmnal mod_els. A
entire field (the top row) as well as the water cuts at individual wel ethoq of analyzing the degree of |nterferenc_e of producthn data
(the bottom three rows) from 200 unconditioned and condition gPm dn‘_ferent wells may als_o be !Jse“”'.to guide the Se'eCt'OU of
models when the injected water is at pore volume injected (PVI) ghjd_uctlon data used in the inversion to increase the computational
1.0. The true values from the reference field are shown in the safffd®'€"cy:
figure by bullets. Itis clearly shown that integrating production data
shows significant improvement in forecasting results in terms dfomenclature

accuracy and uncertainty. [A] = transmissibility matrix

[B] = right hand side of discretized flow equation
¢ = formation compressibility, pst

The SSC method appears to be flexible and computationally effi- h = thickness of reservoir, ft

cient for integrating single-phase multiple well pressure/rate data. k = permeability, md

It is well suited as an interpretive tool for extracting spatial  k, coarse grid permeability from inversion, md

representations (i.e., 2D coarse grid models) from production data ki = power average of fine grid permeability, md

Conclusions

=
I
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Water Cut in Well 1 (Unconditional) Water Cut in Well 1 (Conditional)
— =

.80

WCT w1
WCT W1

0.40]

WCT W2
WCT w2

Water Cut in Well 3 (Conditional

)

WCTW3
WCT W3

Fig. 17—The water cuts at the producing wells from 30 uncon-
ditioned (left) and conditioned (right) realizations. The thick light
curves are results from the reference true field.

ki = kriging estimation of permeability, md
n, = number of master points
n, = number of timesteps

n, = number of wells

N = number of fine grid cells in a coarse block
O = objective function
p = pressure, psi

Q = production rate, B/D

{S} = sensitivity coefficient vector
t = time, days

V = volume of coarse gridblock

[W] = inverse covariance of observation errors
a = amplitude factor for constraint interval
B = moving step in updating parameters

Ak = permeability perturbation, md

® = viscosity, cp

owig = Standard deviation of kriging estimation
¢ = porosity

® = averaging power

Superscript
cal = calculated
obs = observed
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Fig. 18 —The histograms of total oil produced (top row) and water cuts at three wells (bottom 3 rows)
from 200 unconditioned (left) and conditioned (right) realizations when the injected water is at pore
volume injected of 1.0. Bullets are the true results from the reference field.
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Appendix A—Calculation of Sensitivity Coefficients  conditions. The solution of pressure at time- 1 is obtained by

Discretization of the Flow Eq. 1, with an implicit scheme leads tiverting matrix [A], that is,

the matrix notation

[AK P = [BHPY + {f}, oo, (A1) {pt=[AIYBEPY F [ATHEY. (A-2)
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The sensitivity coefficients at timestdp+ 1 can be calculated this linear approximation, after some manipulation, we can write
right after the pressure at tintet+ 1 is obtained. The perturbation our objective function (Eq. B-1) as

of parametek,, can be written as

a{p}Hl N @
dAk,  dAk,
Bl

= Ak, {p}

[A] Py

opr ot
+[B] aAk. + 9Ak.’

wheren,,, = total number of master points, thus,

Pyt o{p}

aAk. +BISAk

m=1,...,n, (A-3)

J[B] .
= Wm {p}

Aty AL
+6A7km*m{p} , m=1,...

Note that Eg. A-4 has the same form as Eq. A-1 and ma&pbhias
just been inverted when solving for the pressung}{*. The
sensitivity coefficients can be obtained at the same timestep],
by simple matrix operations, that is,

H{phtt o pH J[B
S % = [A][B] % +[A] 8£—k1 {py
TN _, I[A]
+ [A] 1Wm - [A] 1m{P}Hl, m= 1, RN |
......................... (A-5)

The elements of matric&§A]/ d Ak, d[B]/0Ak,, anda{ f} oAk,

can be directly computed from the expressions of elements

matrices A, [B], and {f}. a{P}%dAk,, = O.

The efficient calculation of sensitivity coefficients has receive

significant attention in the literatures.14.15

Appendix B—Minimization of Objective Function

o{p) = o({p*})

+ 2UDYIM} + DUMITCL{M},

t=1 t=1

where the elements of matrice®}, and {C}, are expressed as
Ao = 20p Y — {pP*) WI{S .+ oo oo (B-5)

and Gyt = {STWI{S: - oo (B-6)
The constraints used for minimizing the objective function (Eqg.

B-4) are simply the possible minimum and maximum values of
perturbations, i.e.,

{AKpint S{IME S {AKpad oo (B-7)
that is

DKM} S {AKpad o v v (B-8)
and —[IKM}={AKnnd, o (B-9)

where [] = ann,, X n,,identity matrix, {AKqm,} = min{k°, K.y —
a0yigt and { okmag = max{k®, Kyig + aoyg}- { K° = the vector
of permeability values at master points in the initial fieldk{;}
and {oyig} = kriging estimations and the corresponding kriging
standard deviations, respectively, at the master points, based on
available measured permeability data. If there are no pkior
q}pasurementsk{(,ig} and { oy} can be selected as the mean and
standard deviation of the desired permeability histograns a
gonstant value that specifies the interval size of the constraints.
This formulation is a standard quadratic optimization problem.
In the current SSC code, we solve this optimization problem with
a modified gradient projection method to take advantage of the
simple expression of constraints expressed in Egs. B-8 and B-9. At

The objective function given in Eq. 2 can be written in the matrigach iteration of the optimization process, the search direction is

form

o{p ) = 2P — (P TWA{ P — (™),

t=1

obtained by projecting the gradient of the objective function on the
null space of the gradients of the binding constraints (see Ref. 3 for
details).

Sl Metric Conversion Factors

where {p=}, = {pff, pf3, ..., pen} and (P, = {pets bbl X 1.589 873 EO0L =
pe%s, ..., pets} are the numerically calculated and observed cp X 1.0* E-03 = Pas
pressures at Well = 1, ..., n, and timet = t;, ..., t, [W], ft < 3.048* E-01 =m
is the inverse covariance matrix of observation errors at tinie ft? x 9.290 304* E-02 = nv
pressure measurement errors at different wells are independent, psi X 6.894 757 B-00 = kPa

[W], is a diagonal matrix with the form

Wit

w=| ™

Wiyt

Objective function (Eg. B-1) is a nonlinear function of the modé <
parameters we need to compute (i.e., the perturbations of perrﬁ%—

ability at master locations,NI} = {Aky, Ak, ..., Ak,}). We

SPEJ

*Conversion factors are exact.
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